

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Table of Contents

	Read Me

	Components

	ID Generation

	Sharding Functions

	Read Strategies

	The Router

	Other Components

	Installation

	Choosing How To Shard

	Settings

	Usage

	Store Models on Another DB

	Sharding A Model

	Model Migration

	Data Migrations

	Advanced Topics

	Replication Lag

	Shard Rebalancing

	Change Log

Advanced Topics

In this section we’ll discuss some of the more advanced topics that have not yet been added to the library.

	Replication Lag

	Shard Rebalancing

Shard Rebalancing

Do I Want This

There are two types of shard rebalancing, logical shard rebalancing and physical shard rebalancing. They are based on physical and logical shards, as discussed in the Choosing How To Shard section of the documentation. If you’ve created lots of logical shards then this is a straight forward task and it does not currently require any code support.

TODO: Lies. You need to mark a DB as read only. Will Do/add.

Physical shard rebalancing involves moving logical shards from machine to machine. This is really simple to do as you’re copying a whole database from one physical node to another then adjusting the URL of the database in the settings file to point to the new machine. In the event that you have not logically sharded your data, then each node contains a single logical shard. As such you are forced to use logical shard rebalancing.

Logical shard rebalancing involves moving a subset of data from one database to another. This is done by freezing a subset of your data from being written to as you copy over all the relevant models. For example, if your application shards by User then you must freeze all writes for the User and copy all thier data over to the new database. After ensuring its integrity, you then switch the User’s shard to read from and destroy the original copy of the data.

Why Logical Shard Rebalancing Is Difficult

As you can imagine, most applications are fairly complicated and you’d need to do two things in order to ensure a successful rebalancing. The first is that you need to stop the data to be moved from being modified. Therefore it requires that every sharded model, on the shard group being moved, be able to answer the question of whether it should be read-only. The second is that you need to be able to connect every sharded model such that you can not only identify the rows to be copied but in what order they need to be copied so that all foreign key constraints are kept.

Due to the above complexities as well as the issue of how to store and track the read-only data in an effective way across all instances of the app, I have not yet included a way to do this within the library.

Replication Lag Time

Why This Is Difficult

As mentioned earlier in the documentation, when using replication drives you may get stale data if you read from one of these drives before the data has propagated from the primary drive. This is a difficult problem to solve due to the way routing works in Django.

For example, the following call:

CoolGuyModel.objects.using('some_database').create(user_id=1, some_cool_guy_string="123")

Will result in the router receiving the information that we want to create an instance of CoolGuyModel. The router is not given the value of any field or details about the instance. As such, it’s really hard to mark something as “dirty” such that it can only be read from the primary database.

The Django Multi DB Router [https://github.com/jbalogh/django-multidb-router], which is made to be used for replication database, uses a cookie-based strategy. It adds a cookie every time a user calls a function which modifies data and that entire require reads only from primary database. There are two flaws with this method that prevent it from being included here:

The first is that this does not handle the case of stale data being read in from non-request and non-response sources. For example: Celery Tasks, Management Commands and anything else that writes then reads data (or reads while a user is modifying it) could real stale data.

The second is that a second user requesting the same data will get stale data. This does not invalidate the data but instead works on invalidating just the user who wrote the changes.

As of yet, I have yet to come up with a better way of handling replication lag time.

A Possible Implementation

To integrate Django Multi DB Router [https://github.com/jbalogh/django-multidb-router] version 0.6 (latest at the time of writing this) with this library, you can do the following:

	pip install the django-multidb-router package and add it to your requirements:

pip install django-multidb-router

	Subclass the router I’ve provided:

from django.conf import settings

from multidb.pinning import this_thread_is_pinned

from django_sharding_library.router import ShardedRouter

class ShardedRouterWithReplicationLagTimeSupport(ShardedRouter):
 """
 A router that is shard-aware and supports replication lag time.
 """

 def get_replica_primary_mapping(self, databases):
 """
 Creates a dictionary that maps a replica drive name to its
 primary database.
 """
 mapping = getattr(self, 'primary_replica_mapping', {})
 if mapping:
 return mapping
 for name, config in databases.items():
 # map primary drives to themselves to make the code simpler
 primary = config.get('PRIMARY', name)
 mapping[name].append(primary)
 setattr(self, 'primary_replica_mapping', mapping)
 return mapping

 def db_for_read(self, model, **hints):
 database = super(ShardedRouterWithReplicationLagTimeSupport, self).db_for_read(
 model, **hints
)
 if database is not None:
 primary_replica_mapping = self.get_replica_primary_mapping(
 settings.DATABASES
)
 primary_db = primary_replica_mapping[database]
 return primary_db if this_thread_is_pinned() else database
 return None

	Set that router as your database router in your settings file:

DATABASE_ROUTERS=['<path_to_router>.ShardedRouterWithReplicationLagTimeSupport'],

	Add the middleware

MIDDLEWARE_CLASSES = (
 'multidb.middleware.PinningRouterMiddleware',
 # ...more middleware here...
)

	Adjust the replication lag time and the cookie name:

MULTIDB_PINNING_SECONDS = 15
MULTIDB_PINNING_COOKIE = 'multidb_pin_writes'

Note: This has not been extensively tested by the author.

ID Generation

In order to shard your database, one of the first decisions to make is how you assign identifiers to the sharded objects. While it is not required, it is highly recommended that you choose a unique identifier. The main reason here being that you may want to either move data across shards later or that you may choose to analyze data across various shards for analytics and you will have to differentiate those objects before moving them to another server.

This repository is initially shipping with three strategies but you may implement your own. The base requirement for defining your own strategy at the moment is that you define a class like this:

class BaseIDGenerationStrategy(object):
 """
 A strategy for Generating unique identifiers for the sharded models.
 """
 def get_next_id(self, database=None):
 """
 A function which returns a new unique identifier.
 """
 raise NotImplementedError

In the above example, it takes an optional database. However you will find that you can choose to provide additional arguments later on when you make use of the generator. The only real requirements is that it be a class with a get_next_id function.

The two included in the package are:

	Use an autoincrement field to mimic the way a default table handles the operation

	Assign each item a UUID with the shard name appended to the end.

	A postgres-specific field that works similarly to Django’s auto field, but in a shard safe way (only works for Postgres, don’t try it with anything else!)

The Autoincrement Method

This strategy uses a non-sharded table in order to generate unique identifiers. The package currently includes a backend for both PostgresQL and MySQL which uses either a bigserial or serial field, respectively. That allows the generation of up to 9223372036854775807 items which is probably enough for most applications that don’t need to consider a dedicated sharding system.

Note: The MySQL implementation uses a single row to accomplish this task while Postgres currently uses n rows until 9.5 is released and upsert can be used.

The UUID Method

While the odds of a UUID collision are very low, it is still possible and so we append the database shard name as a way to guarantee that they remain unique. The only drawback to this method is that the items cannot be moved across shards. However, it is the recommendation of the author that you refrain from shard rebalancing and instead focus on maintaining lots of shards rather than worry about balancing few large ones.

The PostgresShardGeneratedIDField Method

This strategy is an automated implementation of how Instagram does shard IDs. It uses built-in Postgres functionality to generate a shard-safe ID on the database server at the time of the insert. A stored procedure is created and uses a user-defined epoch time and a shard ID to make sure the IDs it generates are unique. This method (currently) supports up to 8191 shards and up to 1024 inserts per millisecond, which should be more than enough for most use cases, up to and including Instagram scale usage!

Pinterest

They recently wrote a lovely article [https://engineering.pinterest.com/blog/sharding-pinterest-how-we-scaled-our-mysql-fleet] about their sharding strategy. They use a 64 bit ID that works like so:

def create_item_id(self, database, model_class, local_id):
 return (
 (self.database_name_to_id_map[database] << 46) |
 (self.model_to_id_map[model_class] << 36) |
 (local_id <<0)
)

def get_info_from_item_id(self, item_id):
 database_id = (item_id >> 46) & 0xFFFF
 model_id = (item_id >> 36) & 0x3FF
 local_id = (item_id >> 0) & 0xFFFFFFFFF
 return (
 self.database_id_to_name_map[database_id],
 model_id_to_class_map[model_id],
 local_id
)

By using the above method to reference items, you need not choose an explicit ID generation method and instead the local_id can simply by an autoincrementing field on that table.

That field would look something like this:

class ShardedLocalIDField(ShardedIDFieldMixin, AutoField):
 def __init__(self, *args, **kwargs):
 kwargs['strategy'] = None
 return super(ShardedLocalIDField, self).__init__(*args, **kwargs)

 def get_pk_value_on_save(self, instance):
 return super(AutoField, self).get_pk_value_on_save(instance)

While I have not included all of the code required to use this type of sharding strategy, this may be accomplished using this library.

Other Components

A quick run through of some of the other components shipped with the library.

Decorators

Model Configuration Decorator

Provided in the library is a way to specify that a model is sharded or that a model is stored on a database other than the default database. A sharded model verifies that it’s primary key inherits from a base mixin to ensure that the primary key has been chosen carefully and the developer is not accidentally using the deafult primary key field.

def model_config(shard_group=None, database=None, sharded_by_field=None):
 """
 A decorator for marking a model as being either sharded or stored on a
 particular database. When sharding, it does some verification to ensure
 that the model is defined correctly.
 """
 def configure(cls):
 if database and shard_group:
 raise ShardedModelInitializationException(
 'A model cannot be both sharded and stored on a particular database.'
)

 if not database and not shard_group:
 raise ShardedModelInitializationException(
 'The model should be either sharded or stored on a database '
 'in the `model_config` decorator is used.'
)

 if database:
 if not settings.DATABASES.get(database, {}).get('PRIMARY'):
 raise NonExistentDatabaseException(
 'Unable to place {} in {} as that is not an existing primary '
 'database in the system.'.format(cls._meta.model_name, database)
)
 setattr(cls, 'django_sharding__database', database)

 if shard_group:
 sharded_fields = list(filter(
 lambda field: issubclass(type(field), ShardedIDFieldMixin),
 cls._meta.fields
))
 if not sharded_fields:
 raise ShardedModelInitializationException(
 'All sharded models require a ShardedIDFieldMixin.'
)

 if not list(filter(lambda field: field == cls._meta.pk, sharded_fields)):
 raise ShardedModelInitializationException(
 'All sharded models require the ShardedAutoIDField to be the '
 'primary key. Set primary_key=True on the field.'
)

 if not callable(getattr(cls, 'get_shard', None)):
 raise ShardedModelInitializationException(
 'You must define a get_shard method on the sharded model.'
)

 setattr(cls, 'django_sharding__shard_group', shard_group)
 setattr(cls, 'django_sharding__is_sharded', True)

 return cls
 return configure

Fields

Note: all fields given must remove the custom kwargs from their kwargs before calling __init__ on super and replace them after calling deconstruct on super in order to prevent these arguments from being based on to the migration and subsequently the database.

Sharded ID Fields

This package ships with the mixin required to create you own sharded ID fields as well as a few basic ones.

The Sharded ID Field Mixin

class ShardedIDFieldMixin(object):
 """
 A field which takes an id generator class instance as an argument and uses the
 generator to assign each new object a unique id.
 """
 def __init__(self, *args, **kwargs):
 # Remove the strategy from the kwargs so that it doesn't get passed to Django.
 setattr(self, 'strategy', kwargs['strategy'])
 del kwargs['strategy']
 return super(ShardedIDFieldMixin, self).__init__(*args, **kwargs)

 def deconstruct(self):
 name, path, args, kwargs = super(ShardedIDFieldMixin, self).deconstruct()

 # Add the strategy from the kwargs so that it does get passed to our model.
 kwargs['strategy'] = getattr(self, 'strategy')
 return name, path, args, kwargs

 def get_pk_value_on_save(self, instance):
 if not instance.pk:
 return self.strategy.get_next_id()
 return instance.pk

Table Sharded ID Field

As an example using the above mixin, one of the included fields uses a secondary table to generate unique IDs, as discussed in the ID generation section of this guide. This takes the class of the table as an argument and implements to strategy shipped with this package:

class TableShardedIDField(ShardedIDFieldMixin, BigAutoField):
 """
 An autoincrimenting field which takes a `source_table_name` as an argument in
 order to generate unqiue ids for the sharded model.
 """
 def __init__(self, *args, **kwargs):
 from django_sharding_library.id_generation_strategies import TableStrategy
 kwargs['strategy'] = TableStrategy(backing_model_name=kwargs['source_table_name'])
 setattr(self, 'source_table_name', kwargs['source_table_name'])
 del kwargs['source_table_name']
 return super(TableShardedIDField, self).__init__(*args, **kwargs)

 def deconstruct(self):
 name, path, args, kwargs = super(TableShardedIDField, self).deconstruct()
 kwargs['source_table_name'] = getattr(self, 'source_table_name')
 return name, path, args, kwargs

Sharded Storage Field

Most people will presumably want to store shards somewhere on a model. We have provided several fields to accomplish this goal. In these docs we will go over an example of storing the shard on the object you’re storing them on as well as storing them on another object.

Storing The Shard On The Same Object: Shard Storage CharField

For example, in this case we will be storing the shard in a CharField but as you can see, we could have used another type of field. The field takes the shard_group as a key word argument and sets the field up to use a signal to save the shard. Later on we will go over the signal and how to bypass it. For now, note that the signal initiates generating the shard prior to saving.

class ShardStorageFieldMixin(object):
 """
 A mixin for a field used to store a shard for in an instance or parent of
 an instance.
 """
 def __init__(self, *args, **kwargs):
 setattr(self, 'django_sharding__stores_shard', True)
 setattr(self, 'django_sharding__shard_group', kwargs['shard_group'])
 del kwargs['shard_group']
 return super(ShardStorageFieldMixin, self).__init__(*args, **kwargs)

 def deconstruct(self):
 name, path, args, kwargs = super(ShardStorageFieldMixin, self).deconstruct()
 kwargs['shard_group'] = getattr(self, 'django_sharding__shard_group')
 return name, path, args, kwargs

class ShardLocalStorageFieldMixin(ShardStorageFieldMixin):
 """
 The ShardLocalStorageFieldMixin is used for when the shard is stored on the model
 that is being sharded by. i.e. Storing the shard on the User model and sharding by
 the User.
 """
 def __init__(self, *args, **kwargs):
 setattr(self, 'django_sharding__use_signal', True)
 return super(ShardLocalStorageFieldMixin, self).__init__(*args, **kwargs)

 def deconstruct(self):
 return super(ShardLocalStorageFieldMixin, self).deconstruct()

class ShardStorageCharField(ShardLocalStorageFieldMixin, CharField):
 """
 A simple char field that stores a shard and uses a signal to generate
 the shard using a pre_save signal.
 """
 pass

Storing The Shard On Another Model Shard Foreign Key Storage Field

As an example, say we have a webapp that serves all TD banks and we wish to store all the branches within a district under the same shard. We could store the shard on the district but perhaps we don’t usually touch the district or need to check it and would rather store the shard on the branch itself but still shard by district. One solution is to use a unqiue shard_key field on another table to store the shards and create a foreign key to that table. That implementation has been included in this library.

As before, we simply store additional data in __init__ and then retreive stored args and kwargs in deconstruct. In this case, we will make use of the ForeignKey field’s args as well as the shard_group from our previous mixin.

After which, we will create a method on pre_save to store the shard. Notice once again that we are loading the strategy from the AppConfig, which we will go through soon.

class ShardForeignKeyStorageFieldMixin(ShardStorageFieldMixin):
 """
 A mixin for a field used to store a foreign key to another table which
 stores the shard, usually a table which inherits from the ShardStorageModel.
 """
 def __init__(self, *args, **kwargs):
 setattr(self, 'django_sharding__stores_shard', True)
 model_class = kwargs.get('to', args and args[0])
 if type(model_class) == str:
 app_label = model_class.split('.')[0]
 app = apps.get_app_config(app_label)
 model_class = app.get_model(model_class[len(app_label) + 1:])
 setattr(self, 'django_sharding__shard_storage_table', model_class)
 return super(ShardForeignKeyStorageFieldMixin, self).__init__(*args, **kwargs)

 def pre_save(self, model_instance, add):
 result = super(ShardForeignKeyStorageFieldMixin, self).pre_save(
 model_instance, ad)
 self.save_shard(model_instance)
 return result

 def save_shard(self, model_instance):
 shard_key = model_instance.get_shard_key()
 if not getattr(model_instance, self.name):
 shard_storage_table = getattr(self, 'django_sharding__shard_storage_table')
 shard_group = getattr(self, 'django_sharding__shard_group')

 bucketer = apps.get_app_config('django_sharding').get_bucketer(shard_group)
 shard = bucketer.pick_shard(model_instance)
 shard_object, _ = shard_storage_table.objects.get_or_create(
 shard_key=shard_key
)
 if not shard_object.shard:
 shard_object.shard = shard
 shard_object.save()
 setattr(model_instance, self.name, shard_object)

class ShardForeignKeyStorageField(ShardForeignKeyStorageFieldMixin, ForeignKey):
 """
 A simple char field that stores a shard and uses a signal to generate
 the shard using a pre_save signal.
 """
 pass

Models

Several models are included to help with sharding your applications.

Shard By Mixin

A mixin which add a field to shard by to the model. This also flags the model to use the included signal (unless the settings is set to off) to save the shard automatically to this field.

def _get_primary_shards():
 """
 Returns the names of databases which make up the shards and have no primary.
 """
 return [
 database_name for (database_name, db_settings) in settings.DATABASES.items()
 if not db_settings.get('PRIMARY', None) and db_settings.get('SHARD_GROUP', None)
]

class ShardedByMixin(models.Model):
 django_sharding__shard_field = 'shard'
 django_sharding__stores_shard = True

 SHARD_CHOICES = ((i, i) for i in _get_primary_shards())

 shard = models.CharField(
 max_length=120, blank=True, null=True, choices=SHARD_CHOICES
)

 class Meta:
 abstract = True

Table Strategy Model

Before when we talked about the TableShardedIDField for using an auto-incriment field to generate unique IDs for items, we required a table to store that information as an argument to that field. Such a table is included to inherit from:

class TableStrategyModel(models.Model):
 id = BigAutoField(primary_key=True)
 stub = models.NullBooleanField(null=True, default=True, unique=True)

 class Meta:
 abstract = True

Shard Storage Mixin

Before when we talked about the ShardForeignKeyStorageField, we discussed needing a table to store those shards in which uses a shard_key as a primary key on that table to ensure the shard_key will only ever be assigned a single shard. Here’s an included version of that table to inherit from:

class ShardStorageModel(models.Model):
 SHARD_CHOICES = ((i, i) for i in _get_primary_shards())

 shard = models.CharField(max_length=120, choices=SHARD_CHOICES)
 shard_key = models.CharField(primary_key=True, max_length=120)

 class Meta:
 abstract = True

Signals

We include one signal in the library which uses the attributes added by the other components in order to save shards to models when they are created. The magic part which automatically runs this is in the app config which is the last component we’ll discuss.

def save_shard_handler(sender, instance, **kwargs):
 bucketer = apps.get_app_config('django_sharding').get_bucketer(sender.shard_group)
 shard_fields = list(filter(
 lambda field: getattr(field, 'django_sharding__stores_shard', False),
 sender._meta.fields
))
 if len(shard_fields) != 1:
 shard_field_name = getattr(sender, 'django_sharding__shard_field', None)
 shard_fields = list(filter(
 lambda field: field.name == shard_field_name,
 sender._meta.fields
))

 if not any(shard_fields):
 return

 if len(shard_fields) > 1:
 raise Exception(
 'The model {} has multuple fields for shard storage: {}'.format(
 sender, shard_fields
)
)
 shard_field = shard_fields[0]
 if not getattr(instance, shard_field.name, None):
 setattr(instance, shard_field.name, bucketer.pick_shard(instance))

The App Config

In order to automate the magic for most users, there is an included app configuration in the django_shard app. We’ll go through it in steps.

Firstly, it grabs the shard information and initializes the strategies chosen by the user through the settings which we’ll go through in the installation step.

shard_settings = getattr(settings, 'DJANGO_FRAGMENTS_SHARD_SETTINGS', {})
shard_groups = [
 settings.DATABASES[db_settings]['SHARD_GROUP'] for db_settings in settings.DATABASES
]
shard_groups = set(filter(lambda group: group is not None, shard_groups))

self.bucketers = {}
self.routing_strategies = {}
for shard_group in shard_groups:
 group_settings = shard_settings.get(shard_group, {})
 self.bucketers[shard_group] = group_settings.get(
 'BUCKETING_STRATEGY',
 RoundRobinBucketingStrategy(shard_group='default', databases=settings.DATABASES)
)
 self.routing_strategies[shard_group] = group_settings.get(
 'ROUTING_STRATEGY',
 PrimaryOnlyRoutingStrategy(databases=settings.DATABASES)
)

Then, once the strategies are known for each of the shard groups, the models that each shard group are sharded on are examined.

When a sharded model is found, it is assumed that the developer wanted the signal to be added to automatically save the shard to the item of the items you’re sharding by. For example, a User with a shard field will automatically have the shard saved to the user unless set to not do so.

 for model in apps.get_models():
 shard_group = getattr(model, 'django_sharding__shard_group', None)
 if getattr(model, 'django_sharding__stores_shard', False) and shard_group:
 shard_field = getattr(model, 'django_sharding__shard_field', None)
 if not shard_field:
 raise Exception(
 'The model {} must have a `shard_field` attribute'.format(model)
)
 else:
 shard_fields = filter(
 lambda field: getattr(field, 'django_sharding__stores_shard', False),
 model._meta.fields
)
 if not any(shard_fields):
 continue

 if len(shard_fields) > 1:
 raise Exception(
 'The model {} has multuple fields for shard storage: {}'.format(
 model, shard_fields)
)
 shard_field = shard_fields[0]
 shard_group = getattr(shard_field, 'django_sharding__shard_group', None)

 if not shard_group:
 raise Exception(
 'The model {} with the shard field must have a `shard_group`'
 ' attribute'.format(model)
)

 if not getattr(shard_field, 'django_sharding__use_signal', False):
 continue

 group_settings = shard_settings.get(shard_group, {})
 if group_settings.get('SKIP_ADD_SHARDED_SIGNAL', False):
 continue

 receiver(models.signals.pre_save, sender=model)(save_shard_handler)

In order to later retreive these strategies, two fuctions are added to the app configuration so that any other code can access them:

class ShardingConfig(AppConfig):
 name = 'django_sharding'

 def ready(self):
 pass # The above code went in here.

 def get_routing_strategy(self, shard_group):
 return self.routing_strategies[shard_group]

 def get_bucketer(self, shard_group):
 return self.bucketers[shard_group]

Components

In this section we’ll go through each of the components that make up the library. By the end of this section, you’ll be ready to pick the components you want to use and to begin putting them into your app.

	ID Generation

	Sharding Functions

	Read Strategies

	The Router

	Other Components

Read Strategies

This framework supports the use of read strategies, here’s an example of when you might want to use one. If you’re using replication databases, you may want to distribute the load across these databases rather than always reading the primary drive by default.

A read strategy looks something like this:

class BaseRoutingStrategy(object):
 """
 A base strategy for picking which database to read from when there are read
 replicas in the system. In order to extend this strategy, you must define a
 `pick_read_db` function which returns the name of the DB to read from,
 given a primary DB.
 If there are no read replicas defined, all strategies should always return the
 primary.
 """
 def __init__(self, databases):
 self.primary_replica_mapping = self.get_primary_replica_mapping(databases)

 def get_primary_replica_mapping(self, databases):
 """
 Creates a dictionary that maps a primary drive name to all the names of
 it's replication databases. This can be used in the strategies.
 """
 mapping = {}
 for name, config in databases.items():
 primary = config.get('PRIMARY', None)
 if not primary:
 continue
 if primary not in mapping:
 mapping[primary] = []
 if primary != name:
 mapping[primary].append(name)
 return mapping

 def pick_read_db(self, primary_db_name):
 """
 Given the name of a primary, pick the name of the database to read
 from which may be a replica or the primary itself.
 """
 raise NotImplementedError

Here we’ll go through some of the included strategies:

Primary Only Read Strategy

A strategy that ignores existing replication databases and will always choose the primary database unless instructed otherwise.

class PrimaryOnlyRoutingStrategy(BaseRoutingStrategy):
 """
 A strategy which will always read from the primary, unless overridden,
 regardless of replicas defined.
 """
 def pick_read_db(self, primary_db_name):
 return primary_db_name

Random Read Strategy

If you don’t have an opinion on the load on each device, you may want to simply choose a random one each time.

class RandomRoutingStrategy(BaseRoutingStrategy):
 """
 A strategy which will choose a random read replicas, or the primary,
 when choosing which database to read from.
 """
 def pick_read_db(self, primary_db_name):
 return choice(self.primary_replica_mapping[primary_db_name] + [primary_db_name])

Round Robin Read Strategy

This is similar to the sharding function in that it should provide a well rounded solution to picking a database and split the load evenly. In order to reduce load imbalance due to the app being restarted, you may want to choose a random DB to start with here as well.

class RoundRobinRoutingStrategy(BaseRoutingStrategy):
 """
 A strategy which will cycle through the read replicas and primary, in a
 round-robin fashion when choosing which database to read from.
 """
 def __init__(self, databases):
 super(RoundRobinRoutingStrategy, self).__init__(databases)
 self.read_cycles = {}

 for primary, replicas in self.primary_replica_mapping.items():
 self.read_cycles[primary] = cycle(replicas + [primary])

 def pick_read_db(self, primary_db_name):
 return next(self.read_cycles[primary_db_name])

Ratio Routing Strategy

Here I’ve provided a basic example, but you could choose to split it up across all the databases at any ratio. For example, you may want to read from the primary drive tem percent of the time, replica 1 forty percent of the time and replica 2 fifty percent of the time. Here’s the example implementation:

class ExampleRatioRoutingStrategy(BaseRoutingStrategy):
 def pick_read_db(self, primary_db_name):
 num = randint(0, 10):
 if num == 0:
 return primary_db_name
 elif num < 5:
 return self.primary_replica_mapping[primary_db_name][0]
 return self.primary_replica_mapping[primary_db_name][1]

Note About Using Read Strategies

If you’re using one of the above, or a custom read strategy, there are some considerations that are important when choosing them. The system does not currently have a built-in system to handle replication lag time. For example, if a user updates item A in the primary database then reading from a replication database before that data has propogated will result in the user getting stale data. This is typically handled by reading only from the primary drive during this period, however the system does not currently include these tools and will need to be written for the project. For more information, check out the section where we discuss replication lag time.

The Router

In this library I’ve included a single router, which uses the previous components. Here we will go through the various elements of the router.

Choosing a Database to Read From

The first thing that it checks for is whether or not that database is non-sharded but routed to a database that is not default. If that is the case, then we know to send you to that database.

On the other hard, if the model is sharded then we attempt to choose a shard for the model if we are provided an instance. In that case, we either have already chosen a shard (for example, we read this previously and are attempting a refresh) or we need to ask the instance how to get it’s shard. For now, you can ignore the use of a shard group as that will come up later in the guide.

If neither of these two cases are known, we return None lettings Django know that our router has no opinion on what to do.

Note that the self.get_read_db_routing_strategy is not included here as that will be addressed in another section.

 def get_shard_for_instance(self, instance):
 return instance._state.db or instance.get_shard()

 def db_for_read(self, model, **hints):
 specific_database = self.get_specific_database_or_none(model)
 if specific_database:
 return specific_database

 if self.get_shard_group_if_sharded_or_none(model):
 instance = hints.get('instance')
 if instance:
 shard = self.get_shard_for_instance(instance)
 shard_group = getattr(model, 'django_sharding__shard_group', None)
 if not shard_group:
 raise Exception(
 'Unable to identify the shard_group for a {} model'.format(model)
)
 routing_strategy = self.get_read_db_routing_strategy(shard_group)
 return routing_strategy.pick_read_db(shard)
 return None

Choosing a Database to Write To

This works similarly to reading as we need to identify which database to read from. However, the code is simpler as we never want to read from a replica so always write to the primary database.

 def db_for_write(self, model, **hints):
 specific_database = self.get_specific_database_or_none(model)
 if specific_database:
 return specific_database

 if self.get_shard_group_if_sharded_or_none(model):
 instance = hints.get('instance')
 if instance:
 db = self.get_shard_for_instance(instance)
 db_config = settings.DATABASES[db]
 return db_config.get('PRIMARY', db)
 return None

Can Items Be Related?

Typically, we can only allow relations between items on the same database as you cannot have a foreign key across a database. As such, we have to check that both objects are stored on the same database.

First we check if it’s non-sharded but stored on a single database other than default. If they both are, then we only allow the relation is they are stored on the same database. Similarly, the second check looks at the shard status of both items and whether they would be on the same shard or not. If non of these checks are true, then the items are assumed to both be on the default database and the relation is allowed.

 def allow_relation(self, obj1, obj2, **hints):
 """
 Only allow relationships between two items which are both on only one database or
 between sharded items on the same shard.
 """
 specific_database_for_object_one = self.get_specific_database_or_none(obj1)
 specific_database_for_object_two = self.get_specific_database_or_none(obj2)

 if specific_database_for_object_one != specific_database_for_object_two:
 return False
 elif specific_database_for_object_one:
 return True

 shard_group_for_object_one = self.get_shard_group_if_sharded_or_none(obj1)
 shard_group_for_object_two = self.get_shard_group_if_sharded_or_none(obj2)

 if shard_group_for_object_one != shard_group_for_object_two:
 return False
 elif self.shard_group_for_object_one:
 return self.get_shard_for_instance(obj1) == self.get_shard_for_instance(obj2)
 return True

Can I Be Migrated?

When running your migrations, the app needs to be able to determine which databases require the migration in order to same developers from having to do this work manually.

As such, we restrict migrations to only those which provide the model they are migrating as well as migrations to primary databases. In the event that a model is on a specific database or sharded then we also restrict the migration to those sets of databases. By using the module loading system in Django, we can determine the shard status of a model instance in order to make an informed decision.

 def allow_migrate(self, db, app_label, model_name=None, **hints):
 if settings.DATABASES[db].get('PRIMARY', None):
 return False
 model_name = model_name or hints.get('model_name')
 if not model_name:
 raise InvalidMigrationException(
 'Model name not provided in migration,'
 'please pass a `model_name` with the hints passed into the migration.'
)

 # Sometimes, when extending models from another app i.e. the User Model, the app
 # label is the app label of the app where the change is defined but to app with
 # the model is passed in with the model name.
 try:
 app = apps.get_app_config(app_label)
 model = app.get_model(model_name)
 except LookupError:
 app_label = model_name.split('.')[0]
 app = apps.get_app_config(app_label)
 model = app.get_model(model_name[len(app_label) + 1:])

 single_database = self.get_specific_database_or_none(model)
 shard_group = self.get_shard_group_if_sharded_or_none(model)
 if shard_group and single_database:
 raise InvalidMigrationException(
 'Model marked as both sharded and on a single database, '
 'unable to determine where to run migrations for {}.'.format(model_name)
)
 if single_database:
 return db == single_database
 if shard_group:
 return settings.DATABASES[db]['SHARD_GROUP'] == shard_group
 return db == 'default'

Sharding Functions

A sharding function is a function that is used to choose a shard for a group of objects. This is composed of two core functions that decide how to pick a shard in the case where we haven’t previously chosen one and how to retrieve a previously chosen shard. This is split into the two functions pick_shard and get_shard. There are times when those two functions do the same thing, but in many cases the choice to pick a shard is non-deterministic and so you’ll need to read from a stored value in get_shard.

Note: This library does support Functional Sharding, which allows you to have multiple groups of shards or sharding_groups. This would allow you to store all of the objects of type A on one set of shards and all of the items of type B on another set of shards. However, the author does not suggest having multiple sharding functions and splitting data for one related item across multiple shards. Doing so prevents you from doing database joins on those items and typically the desire to split data in this way suggests that the whole system should be split. It is much easier and simpler to store all related data on a single shard.

An interface for a sharding strategy looks as follows:

class BaseBucketingStrategy(object):
 def __init__(self, shard_group='default'):
 self.shard_group = shard_group

 def get_shards(self, databases):
 return [
 name for(name, config) in databases
 if (
 config.get('SHARD_GROUP') == self.shard_group and
 not config.get('PRIMARY')
)
]

 def pick_shard(self, model_sharded_by):
 """
 Returns the shard for the model which has not previously been bucketed
 into a shard.
 """
 raise NotImplementedError

 def get_shard(self, model_sharded_by):
 """
 Returns the shard for a model which has already been assigned a shard.
 """
 raise NotImplementedError

There are multiple ways to implement the above code and I will provide, as an example, the functions that are shipped with this packages. There are two types of strategies that you may wish to use. The first kind, deterministic functions, will always return the same bucket and storage of the chosen shard is optional. The second kind, non-deterministic functions, require the shard to be stored as there is no way to derive the shard that belongs to a group of objects

Deterministic Functions

I have not shipped this package with any truly deterministic functions as all the ones that I’ve implemented either use randomness, order or depend on the number of shards in the system as the time that the shard is picked. This is not highly recommended and is a considerably harder method but could still be implemented. For example, if the number of shards were never going to change, you could do something like this:

class ModBucketingStrategy(BaseBucketingStrategy):
 """
 A shard selection strategy that assigns shards based on the mod of the
 models pk.
 """
 def __init__(self, shard_group, databases):
 super(RoundRobinBucketingStrategy, self).__init__(shard_group)
 self.shards = self.get_shards(databases)
 self.shards.sort()

 def pick_shard(self, model_sharded_by):
 return self.shards[hash(str(model_sharded_by.pk)) % len(self.shards)]

 def get_shard(self, model_sharded_by):
 return self.pick_shard(model_sharded_by)

Non-deterministic Functions

Random Bucketing Strategy

As the name says, this method chooses a random shard and ends up storing it on the model in question.

class RandomBucketingStrategy(BaseShardedModelBucketingStrategy):
 """
 A shard selection strategy that assigns shards randomly.
 This is non-deterministic and this strategy assumes the shard is saved to
 the model.
 """
 def __init__(self, shard_group, databases):
 super(RoundRobinBucketingStrategy, self).__init__(shard_group)
 self.shards = self.get_shards(databases)

 def pick_shard(self, model_sharded_by):
 return choice(self.shards)

 def get_shard(self, model_sharded_by):
 return model_sharded_by.shard

Round-Robin Bucketing Strategy

This uses a round-robin approach to choose a shard in order to maintain a balance across the system so that the proportion of new instances is even across the shards:

class RoundRobinBucketingStrategy(BaseShardedModelBucketingStrategy):
 def __init__(self, shard_group, databases):
 super(RoundRobinBucketingStrategy, self).__init__(shard_group)
 shards = self.get_shards(databases)
 max_index = max(0, len(shards) - 1)
 starting_index = randint(0, max_index)
 shards = shards[starting_index:] + shards[:starting_index]
 self._shards_cycle = cycle(shards)

 def pick_shard(self, model_sharded_by):
 return next(self._shards_cycle)

 def get_shard(self, model_sharded_by):
 return model_sharded_by.shard

Since this is initialized at app initialization time, it begins the cycle at a random index, otherwise the first shard would always be imbalanced.

Mod Bucketing Strategy

This works the same way as the non-deterministic strategy but allows you to add shards by storing them on the model.

class ModBucketingStrategy(BaseBucketingStrategy):
 """
 A shard selection strategy that assigns shards based on the mod of the
 models pk.
 """
 def __init__(self, shard_group, databases):
 super(RoundRobinBucketingStrategy, self).__init__(shard_group)
 self.shards = self.get_shards(databases)

 def pick_shard(self, model_sharded_by):
 return self.shards[hash(str(model_sharded_by.pk)) % len(self.shards)]

 def get_shard(self, model_sharded_by):
 return model_sharded_by.shard

Choosing How To Shard

When deciding how to shard, there are several considerations to make that will impact your setup.

Shard Groups

You can think of shard groups as distinct groups of databases so that you can limit sharded data to a subset of the shards included in your application. For example, you may have six shards in your application and use three for one item and three to store another. The default shard group is used when no shard groups are given in the settings file.

While you may use this library however you’d like, the author recommends that you only use the default shard group. This is because you will often want to do joins on the data later, when it will not be in the same set of databases, or the data is so split that it probably does not belong in the same application as the other data. In either case, it is simpler and easier to use one shard group over many.

Storing Shards

Often you’ll want to store the shard when you pick one for an instance. For example, if you were to shard your data by user then you’ll want to store that shard somewhere. You’ll likely want to store it on the user, but perhaps all your users have multiple Group instances and you’d like to store this data on the Group rather than the user, than that is an option too. Both are supported by the library, but you must decide where to store the shard unless your sharding function is deterministic (as discussed earlier in the component section of these docs).

Sharding Functions

In order to shard your data, you need to decide how to pick those shards. For example, it you were to shard by User then how do you pick a shard given a User? You may choose to inspect the user or to try to balance the load across all the databases. There are multiple ways to do that and several included as discussed in the component section of these docs.

Will I Use Replicate Databases?

To an app without replicate databases, the read strategy for a router is unimportant. However, if you have replicates then you may want to decide how to use them. You may want to read from them evenly, randomly or using a known ratio as discussed in the components section of the docs. While replicates may be useful, the author feels that you should not use them in your production environment. As discussed by pinterest [https://engineering.pinterest.com/blog/sharding-pinterest-how-we-scaled-our-mysql-fleet] in their Design Philosophies, you then have to take into account replication lag time as well as other issues. It would be simpler and easier to just include more shards.

Logical vs Physical Sharding

There are two types of shards you can create, logical shards and physical shards. A logical shard is splitting data into multiple databases on the same physical node. A physical shard is when splitting data across multiple nodes. It is the recommendation of the author that you start using both. The reason is that it’s easier to rebalance logical shards across machines that rebalance the data in physical shards. For example, imagine your application were to have two physical shards defined like so:

DATABASES = database_configs(databases_dict={
 'unsharded_databases': [
 {
 'name': 'default',
 'environment_variable': 'DATABASE_URL',
 'default_database_url': 'postgres://user:pwd@localhost/sharding'
 }
],
 'sharded_databases': [
 {
 'name': 'app_shard_001',
 'environment_variable': 'SHARD_001_DATABASE_URL',
 'default_database_url': 'postgres://user:pwd@some_host_01/shard_01'
 },
 {
 'name': 'app_shard_002',
 'environment_variable': 'SHARD_002_DATABASE_URL',
 'default_database_url': 'postgres://user:pwd@some_host_02/shard_02'
 },
]
})

Suppose they were nearing capacity then adding a third would result in a terrible data imbalance. The only way to rebalance them is to move related data to a new shard. That’s a difficult task which we’ll discuss in the advanced section of this guide.

On the other hand, if you had used two physical nodes with two logical shards each, which you’d define like so:

DATABASES = database_configs(databases_dict={
 'unsharded_databases': [
 {
 'name': 'default',
 'environment_variable': 'DATABASE_URL',
 'default_database_url': 'postgres://user:pwd@localhost/sharding'
 }
],
 'sharded_databases': [
 {
 'name': 'app_shard_001',
 'environment_variable': 'SHARD_001_DATABASE_URL',
 'default_database_url': 'postgres://user:pwd@some_host_01/shard_01'
 },
 {
 'name': 'app_shard_002',
 'environment_variable': 'SHARD_002_DATABASE_URL',
 'default_database_url': 'postgres://user:pwd@some_host_01/shard_02'
 },
 {
 'name': 'app_shard_003',
 'environment_variable': 'SHARD_003_DATABASE_URL',
 'default_database_url': 'postgres://user:pwd@some_host_02/shard_03'
 },
 {
 'name': 'app_shard_004',
 'environment_variable': 'SHARD_004_DATABASE_URL',
 'default_database_url': 'postgres://user:pwd@some_host_02/shard_04'
 },
]
})

Then, as a way to rebalance the data, you could move either app_shard_003 or app_shard_002 to some_host_03, your new machine. And all you’d have to do is copy over the database and change 'postgres://user:pwd@some_host_02/shard_03' to 'postgres://user:pwd@some_host_03/shard_03'. This wouldn’t leave you incredibly balanced with only two logical shards per node, so the author suggests at least ten logical shards per node. That way you can easily rebalance data as your data-set grows.

Many Shards or Few Shards?

The author recommends that you create more shards than you think are necessary. Extra logical shards allow you to much more easily rebalance data across physical nodes in the future. Also, by storing data on different machines, you increase the number of connections to your databases.

Installation

This section will cover how to install the app with emphasis on the details not covered in the ReadMe.

	Choosing How To Shard

	Settings

Settings

Installation

To install the package, use pypi:

pip install django-sharding

and Add the package to your installed apps:

INSTALLED_APPS=[
 ...,
 "django_sharding",
],

Using The Default Configuration

Refer to the configuration section (link) of the ReadMe for additional information.

Add the following to your settings file:

Most applications will not need additional routers but if you need your own then
remember that order does matter. Read up on them here (link).
DATABASE_ROUTERS=['django_sharding_library.router.ShardedRouter'],

Add your databases to you settings file in the following format based on, and using, dj-database (link).
This structure supports unsharded sets of databases as well as replicates. This setting uses a single shard group,
more advanced structures are possible and checkout the other section of the docs for more information (link):

DATABASES = database_configs(databases_dict={
 'unsharded_databases': [
 {
 'name': 'default',
 'environment_variable': 'DATABASE_URL',
 'default_database_url': 'postgres://user:pw@localhost/sharding'
 }
],
 'sharded_databases': [
 {
 'name': 'app_shard_001',
 'environment_variable': 'SHARD_001_DATABASE_URL',
 'default_database_url': 'postgres://user:pw@localhost/sharding_001',
 'replicas': [
 {
 'name': 'app_shard_001_replica_001',
 'environment_variable': 'REPLICA_001_DATABASE_URL',
 'default_database_url': 'postgres://u:pw@localhost/app_1_replica_1'
 },
 {
 'name': 'app_shard_001_replica_002',
 'environment_variable': 'REPLICA_002_DATABASE_URL',
 'default_database_url': 'postgres://u:pw@localhost/app_1_replica_2'
 },
]
 },
 {
 'name': 'app_shard_002',
 'environment_variable': 'SHARD_002_DATABASE_URL',
 'default_database_url': 'mysql://user:pw@localhost/sharding_002'
 },
]
})

Additional Settings

There are several settings you can set that are not covered by the simple setup instructions. That may be because you want to use a different set of components than the default or wish to integrate your own with the library.

For each of the shard groups you can specify the read strategy for choosing a database to read from (from the primary and its replicates) as well as the strategy used to assign shards for this shard group.

For example, if we sharded users using the user_shard_group, we could choose to override the defaults for that shard group by including something like the following in the settings file:

DJANGO_FRAGMENTS_SHARD_SETTINGS = {
 'user_shard_group': {
 'BUCKETING_STRATEGY': SomeCoolStrategy(
 shard_group='user_shard_group', databases=DATABASES
),
 'ROUTING_STRATEGY': ReadOnlyFromPrimaryDatabases(databases=DATABASES),
 }
}

Additionally, if you add a shard field on a model to store the shard for that object, the package will automate the process of retrieving and saving the shard on model save. You can skip automatically saving the shard to the User model in this example by adding this setting:

DJANGO_FRAGMENTS_SHARD_SETTINGS = {
 'user_shard_group': {
 'SKIP_ADD_SHARDED_SIGNAL': True,
 }
}

Storing A Model On Another Database

In vanilla Django it’s not straight forward to store data on another database. Sometimes when you’re not sharding a table, you may want to store it on another database. For example, for performance you may want to store your User table on a secondary database. Doing this with the package is very easy, all you need to do is decorate your model like this:

from django.db import models

from django_sharding_library.decorators import model_config

@model_config(database='secondary_database')
class SomeCoolGuyModel(models.Model):
 cool_guy_string = models.CharField(max_length=120)

The model_config decorator takes the name of the database and will handle the proper routing for you when combined with the included router and migration command.

Creating Data Migrations

In order to remain compatible with Django, the way to specify which databases to run the migration on, it will be selected based
on what hints (if any) are passed by RunPython.

case 1: No hints

The following code will execute on each database that has at least one model in the app where the migration is stored.
You will need to take this into account when writing your python code, as int he example below.

from __future__ import unicode_literals

from django.conf import settings
from django.db import migrations

from django_sharding_library.utils import is_model_class_on_database

def do_the_stuff(apps, schema_editor):
 User = apps.get_model("auth", "User")
 current_database = schema_editor.connection.alias

 if is_model_class_on_database(model=User, database=database):
 User.objects.using(database).update(password="*******")

class Migration(migrations.Migration):

 dependencies = [
 ('auth', '__first__'),
]

 operations = [
 migrations.RunPython(
 do_the_stuff, hints={}
),
]

case 2: model_name passed in hints

The following code will execute on each database that has the User model on it.

The format is to pass it in as a string of <app_name>.<model_name>, e.g. auth.User.

from __future__ import unicode_literals

from django.conf import settings
from django.db import migrations

def do_the_stuff(apps, schema_editor):
 User = apps.get_model("auth", "User")
 current_database = schema_editor.connection.alias

 User.objects.using(database).update(password="*******")

class Migration(migrations.Migration):

 dependencies = [
 ('auth', '__first__'),
]

 operations = [
 migrations.RunPython(
 do_the_stuff, hints={'model_name': settings.AUTH_USER_MODEL}
),
]

case 3: force_migrate_on_databases passed in hints

In order to allow for custom behaviour as there is no way to force Django to migrate on
a specific set of databases during migrate. It will noop on databases which it things do not
need the migration. This is a way around that.

The following code will execute on each database in the force_migrate_on_databases list.
You will need to take this into account when writing your python code, as in the example below.

from __future__ import unicode_literals

from django.conf import settings
from django.db import migrations

from django_sharding_library.utils import is_model_class_on_database

def do_the_stuff(apps, schema_editor):
 User = apps.get_model("auth", "User")
 current_database = schema_editor.connection.alias

 if is_model_class_on_database(model=User, database=database):
 User.objects.using(database).update(password="*******")

class Migration(migrations.Migration):

 dependencies = [
 ('auth', '__first__'),
]

 operations = [
 migrations.RunPython(
 do_the_stuff, hints={'force_migrate_on_databases': ["database_001", "database_003"]}
),
]

Creating & Running Model Migrations

In order to make running migrations easier, a new migration command is included with the package when you add django_sharding to your INSTALLED_APPS list in your settings file. The net effect is that calling python manage.py migrate or python manage.py makemigrations will work as they did before for all model migrations.

Here’s how the old command was wrapped to handle sharding:

from django.conf import settings
from django.core.management.commands.migrate import Command as MigrationCommand

from django_sharding_library.exceptions import InvalidMigrationException

class Command(MigrationCommand):
 def handle(self, *args, **options):
 """
 Wrap the original command and runs migrate on all the databases. When
 a migration is run on a DB it is not supposed to migrate, the router
 detects this and performs no actions on that database. Each database
 tracks its own history of migrations so that you can run them on a
 specific database at a time.
 """

 if not options['database'] or options['database'] == 'all':
 databases = self.get_all_but_replica_dbs()
 elif options['database'] not in self.get_all_but_replica_dbs():
 raise InvalidMigrationException(
 'You must migrate an existing non-primary DB.'
)
 else:
 databases = [options['database']]

 for database in databases:
 options['database'] = database
 # Writen in green text to stand out from the surrouding headings
 if options['verbosity'] >= 1:
 self.stdout.write(self.style.MIGRATE_SUCCESS(
 "\nDatabase: {}\n").format(database)
)
 super(Command, self).handle(*args, **options)

 def get_all_but_replica_dbs(self):
 """
 Return a list of primary databases, used to prevent migrations from
 being run on replication databases.
 """
 return list(filter(
 lambda db: not settings.DATABASES[db].get('PRIMARY', None),
 settings.DATABASES.keys()
))

 def add_arguments(self, parser):
 """
 Overrides the existing Database command to accept any primary database as
 well as the keywork `all` which is the new default value.
 """
 super(Command, self).add_arguments(parser)
 parser._option_string_actions['--database'].default = None
 parser._option_string_actions['--database'].help = (
 u'Nominates a database to synchronize. Defaults to all databases.'
)
 parser._option_string_actions['--database'].choices = (
 ['all'] + self.get_all_but_replica_dbs()
)

By using the included router, it’s as simple as calling migrate on all the primary databases in the system and allowing the system to decide which databases to run the migration on. The above changes were made to make the interface more simple than having to specify all the relevant databases.

PostgresShardGeneratedIDField Migration Info

This library hooks into the Django migrations and creates (or updates) the necessary stored procedures before every migration. We made it work this way for two reasons:

	Django does not have a good way to force a field-specific migration dependency without having to edit the migration files themselves after they are generated

	This allows unit tests to be run on any arbitrary (PostgreSQL) database without any administrative overhead.

The migration hooks should not affect you in any way, but you should be aware that there is a little bit of “magic” going on to make this field work with Django’s migrations, without actually being part of the migration file itself.

If the Django team ever makes migrations easier to customize by adding dependency injection based on specific fields, we will update this and add the migration step to your migration files when they are generated!

Usage

Some example snippets of model creation as well as running and generating migrations.

	Store Models on Another DB

	Sharding A Model

	Model Migration

	Data Migrations

Sharding A Model

Defining The Shard Key

Based on the earlier sections of the documentation, you need to choose a sharding function, strategy and ID generation strategy.

Storing The Shard On The Model With The Shard Key

The first way to do this is to store the shard on the model with the shard key. For simplicity, we’ll assume that you want to shard all your data by a key on the User table, although the ShardedByMixin could be used on any model. The code would therefore look something like this:

from django.contrib.auth.models import AbstractUser

from django_sharding_library.models import ShardedByMixin

class User(AbstractUser, ShardedByMixin):
 pass

Add that custom User to your settings file using the string class path:

AUTH_USER_MODEL = '<app_with_user_model>.User'

Now the result is that the User table has a field on it to store the shard and the app configuration is will automatically generate and save the shard to the User model on the first save.

Storing The Shard On The a Model Without The Shard Key

Alternatively you may want to store the shard somewhere else. For example, the system primary runs on operations done on branches of a bank and so you could store the shard on the branch but you’d also like all branches of the same bank to be on a single shard. In this situation, you’ll want to store the shard on the branch but ensure that no two branches of the same bank are ever on different shards. To do that, you need to use a second table to store the shard and foreign key to that table rather than storing the shard directly.

For example, this code sets up SomeCoolGuyModel to store the shard using a foreign key so that all SomeCoolGuyModels that are nested under the same user are on the same shard.

from django.db import models

from django_sharding_library.fields import ShardForeignKeyStorageField
from django_sharding_library.models import ShardStorageModel

class ShardStorageTable(ShardStorageModel):
 """
 A table with a row for the unique sharding key and a value for the shard.
 """
 pass

class SomeCoolGuyModel(models.Model):
 shard = ShardForeignKeyStorageField(ShardStorageTable, shard_group='default')
 some_cool_guy_string = models.CharField(max_length=120)
 test = models.ForeignKey(UnshardedTestModel)

 def get_shard_key(self):
 return self.test.user_pk

Create Your First Sharded Model

Defining The Model

Once you’ve chosen how you’d like to shard your model, it’s very easy to shard a model across a shard group. You need to define your model like this:

from django.db import models

from django_sharding_library.decorators import model_config
from django_sharding_library.fields import TableShardedIDField
from django_sharding_library.models import TableStrategyModel

class ShardedCoolGuyModelIDs(TableStrategyModel):
 pass

@model_config(shard_group='default', sharded_by_field='user_pk')
class CoolGuyShardedModel(models.Model):
 id = TableShardedIDField(primary_key=True, source_table_name='app.ShardedCoolGuyModelIDs')
 cool_guy_string = models.CharField(max_length=120)
 user_pk = models.PositiveIntegerField()

 def get_shard(self):
 from django.contrib.auth import get_user_model
 return get_user_model().objects.get(pk=self.user_pk).shard

 @staticmethod
 def get_shard_from_id(user_pk):
 from django.contrib.auth import get_user_model
 return get_user_model().objects.get(pk=user_pk).shard

The above example illustrates the id generation strategy of using an unsharded table to generate unique IDs for each instance of the sharded model. The four important steps in defining a sharded model are:

	The model requires the use the decorator with a given shard_group and sharded_by_field to tell Django that the model is sharded and what field it is sharded by.

	The model requires a shard-aware primary field, even if it’s going to use a simple AutoIDField.

	The model needs a get_shard function to instruct how to get a shard given an instance.

	The model needs a get_shard_from_id static method that will tell the router which shard to query against. The method must take an argument (which will be the sharded_by_field value you are querying against) and return the shard to query.

Accessing Data on Sharded Models

When you’re not re-saving an instance of the model you’ve retrieved, you need to tell Django which database to read from and which to save on. This is done by using the using command, or by querying with the shard_by_id field in the filter(), create(), get(), or get_or_create() methods:

You can use the method on the model or another one to get the shard
shard = 'some_database'
CoolGuyShardedModel.objects.using(shard).filter(some_field='some_value')
Or, without the using() statement, if you query against the `sharded_by_field` in your filter()
CoolGuyShardedModel.objects.filter(user_pk=123, some_field='some_value')

Once you’ve defined your model, we can move onto how to run migrations.

Using the PostgresShardGeneratedIDField

If you would like to use the PostgresShardGeneratedIDField, there are a few subtle differences and caveats that you need to be aware of.

	If you define a PostgresShardGeneratedIDField, you should not use another shard ID generation strategy with that model. Additionally, the field should be marked as the primary key. An example of a model with a PostgresShardIDField:

@model_config(shard_group='default')
class CoolGuyShardedModel(models.Model):
 id = PostgresShardGeneratedIDField(primary_key=True)
 cool_guy_string = models.CharField(max_length=120)
 user_pk = models.PositiveIntegerField()

	You must define a “SHARD_EPOCH” variable in your Django settings file. This can be any epoch start time you want, but once chosen, should NEVER be changed. Here is an example of what it should look like (which will make your shard epoch Jan 1, 2016):

import time
from datetime import datetime
other settings go here...
SHARD_EPOCH=int(time.mktime(datetime(2016, 1, 1).timetuple()) * 1000)

	When you are editing your DATABASES settings, the order of the shards MUST be maintained. If you add a new shard, it needs to be added to the end of the list of databases, not to the beginning or middle.

	There is a maximum number of logical shards supported by this field. You can only have up to 8191 logical shards: if you try to go beyond, you will get duplicate IDs between your shards. Do not try to add more than 8191 shards. If you need more than that, I recommend you choose one of the other ID generation strategies.

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

